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Abstract. Evapotranspiration over crop growth period, also referred to as the consumptive water footprint of crop production 12 

(WFCP), is an essential component of the hydrological cycle. However, the existing high-resolution consumptive WFCP 13 

datasets do not distinguish between soil evaporation and crop transpiration and disregard the impacts of different irrigation 14 

practices. This restricts the practical implementation of existing WFCP datasets for precise crop water productivity assessments, 15 

agricultural water-saving evaluations, the development of sustainable irrigation techniques, cropping structure optimisation, 16 

and crop-related interregional virtual water trade analysis. This study establishes a 5-arcmin gridded dataset of monthly green 17 

and blue WFCP, evaporation, transpiration, and associated unit WFCP benchmarks for 21 crops grown in China during 2000-18 

2018. The data simulation was based on calibrated AquaCrop modelling under furrow-, sprinkler-, and micro-irrigated as well 19 

as rainfed conditions. Data quality was validated by comparing the current results with multiple public datasets and remote-20 

sensing products. The improved gridded WFCP dataset effectively compensated for the gaps in the existing datasets through: 21 

(i) revealing the intensity, structure, and spatiotemporal evolution of both productive and non-productive blue and green water 22 

consumption on a monthly scale, and (ii) including crop-by-crop unit WFCP benchmarks according to climatic zones. 23 

1 Introduction 24 

The grain production potential of irrigated agriculture can effectively cope with the pressure that population growth places 25 

on the food supply (Wada et al., 2013; Haddeland et al., 2014; Rosa et al., 2020; Puy et al., 2021; Wang et al., 2021) and 26 

restrain the encroachment of cultivated land on natural regions (Tilman et al., 2011; Brown and Pervez, 2014; Jägermeyr et al., 27 

2017; Puy et al., 2020). Currently, irrigation accounts for more than 70% of worldwide blue water withdrawals (FAO, 2020) 28 

and 90% of global water consumption (Döll, 2009). Irrigated cropland increases the soil water content and releases water 29 
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vapour into the atmosphere, leading to an alteration in the hydrological cycle (Rodell et al., 2009; Elliott et al., 2014; Leng et 30 

al., 2014). Meanwhile, water scarcity is expected to increase in more than 80% of global farmlands, together with the 31 

increasingly serious threats on sufficient agricultural water supply by the competition for water among sectors (Yin et al., 2017; 32 

Pastor et al., 2019; Liu et al., 2022). Apparently, accurate assessment of water consumption on irrigated and rainfed farmlands 33 

is crucial for identifying water-use hotspots and ensuring a stable food supply, particularly in the context of climate change.  34 

The consumptive water footprint of crop production (WFCP) measures the consumption of blue water (i.e., irrigation 35 

water extracted from surface and groundwater) and green water (i.e., soil water directly from rainfall) during the crop growth 36 

period (Hoekstra and Chapagain, 2008; Hoekstra et al., 2011), permitting a unified evaluation of the water consumption of 37 

irrigated and rainfed crops (Lovarelli et al., 2016). The most widely used WFCP database is the WaterStat (Hoekstra and 38 

Mekonnen, 2012). It covers the WFCP of a wide variety of crops, crop derivatives, and biofuels, with data resolution at national, 39 

watershed, and county spatial scales, but it only contains 10-year averages for 1996-2005 (WFN, 2022). The CWASI database 40 

(Tamea et al., 2021) fills the resultant gap concerning the interannual evolution of WFCP data through a fast-track approach 41 

(Tuninetti et al., 2017) at the national scale, suggesting that there is significant interannual variation in the water footprint per 42 

unit mass of crop production (uWFCP), which should be taken into account in analyses and applications. However, none of 43 

the aforementioned studies have considered intra-annual variations or intra-national differences in agricultural water 44 

consumption. Considering that disparities in space and time in the WFCP and uWFCP may have various effects on the 45 

formulation of water management measures. Such changes must be evaluated to provide a reference for seasonal water 46 

shortages (Hoekstra, 2013; Zhuo et al., 2016c). 47 

Numerous studies have assessed the blue and green WFCP of specific crops at finer spatial and temporal resolutions using 48 

the agro-hydrological models including CROPWAT (Mekonnen and Hoekstra, 2011; Tuninetti et al., 2015), GEPIC (Liu et al., 49 

2007), GCWM (Siebert and Döll, 2010), LPJmL (Fader et al., 2011), and AquaCrop (Zhuo et al., 2016b; Wang et al., 2019). 50 

Utilising the WATNEEDs model, Chiarelli et al. (2020) produced the first dataset to record global monthly blue and green 51 

water requirements of producing 23 crops at a 5 arcmin scale. They found that green water accounts for 84% of the considered 52 

global crop water requirements. However, the actual water consumption during crop production is frequently less than the 53 

predicted water requirement owing to soil water deficit, insufficient precipitation, and differences in field management (Long 54 

and Singh, 2013; Fisher et al., 2017). Furthermore, the aforementioned datasets ignore the non-negligible differences between 55 

the WFCP when using different water supply modes or irrigation practices and do not distinguish between the blue and green 56 

water consumption of two independent processes, namely soil evaporation (that is extravagant water consumption) and crop 57 

transpiration. In summary, the limitations of existing WFCP databases mean that they cannot be used to evaluate the effect of 58 

implementing water-saving irrigation practices on the spatiotemporal distribution of agricultural water consumption at a large 59 

https://doi.org/10.5194/essd-2023-102
Preprint. Discussion started: 13 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 3 / 34 

 

regional scale (Wang et al., 2019). Moreover, the lack of information on extravagant water consumption of crops in terms of 60 

the water sources and the spatiotemporal distribution hinders the precise implementation of water-saving agricultural policies 61 

and technologies (Jung et al., 2010; Lian et al., 2018). 62 

To fill the abovementioned gaps in existing WFCP datasets, we developed a gridded dataset comprising monthly green 63 

and blue WFCP, evaporation and transpiration, and associated uWFCP benchmarks for 21 crops grown in China during 2000-64 

2018. A self-sufficiency-oriented food policy has fuelled the explosive growth of water-saving irrigated farmlands in China in 65 

recent decades (SCIO, 1996; Ghose, 2014), with water-saving irrigated areas increasing by 5,698 kha from 2000 to 2018 66 

(representing 12% of the total irrigated area in 2018) (NBSC, 2022). The current study followed the WFN accounting 67 

framework (Hoekstra et al., 2011) and used the calibrated AquaCrop model to simulate the monthly WFCP at a resolution of 68 

5 arcmin. The considered 21 crops account for 83% of national sown areas and 75% of national crop production in China 69 

(NBSC, 2022). The dataset differs from the others in four aspects: (i) It evaluated the effects of different water supply modes 70 

(irrigated or rain-fed) and irrigation practices (furrow, sprinkler, and micro-irrigation) on water consumption throughout the 71 

crop growth period. (ii) It distinguished between monthly blue and green water consumption via soil evaporation and crop 72 

transpiration. (iii) The dataset encompassed both the WFCP in m3 yr-1 and the uWFCP in m3 ton-1. (iv) It identified uWFCP 73 

benchmarks that differentiated between various climatic zones and irrigation practices. The data quality was verified through 74 

its comparison with available public databases and remote sensing products. 75 

2 Data and methods 76 

Three main steps were followed to create and validate the WFCP dataset under various water supply modes and irrigation 77 

practices during 2000-2018 (Fig. 1). 78 

Step 1: Data preparation. We collected, verified, and inverted data on the yearly planting area of each crop under various 79 

water supply modes and irrigation practices at a resolution of 5 arcmin. The AquaCrop simulation required monthly 80 

precipitation, temperature, reference evapotranspiration (ET0), and CO2 datasets. The calibrated crop parameters were obtained 81 

from the published literature. 82 

Step 2: Water footprint simulation. The AquaCrop model was run with daily steps to simulate soil evaporation, crop 83 

transpiration, and crop yield during the growth period of crops. The WFCP and uWFCP were calculated for different water 84 

supply modes and irrigation practices using a spatial resolution of 5 arcmin and a temporal resolution of months (Zhuo et al., 85 

2016c; Wang et al., 2019). 86 

Step 3: Data validation. The simulation results were verified by comparing them with remote sensing products of actual 87 

https://doi.org/10.5194/essd-2023-102
Preprint. Discussion started: 13 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 4 / 34 

 

evapotranspiration (Cheng et al., 2021) and publicly accessible WFCP datasets (Mekonnen and Hoekstra, 2011; Zhuo et al., 88 

2016a; Chiarelli et al., 2020). 89 

 90 

 91 
Figure 1. Three main steps for quantifying the water footprint of crop production. 92 
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2.1 Data sources 93 

2.1.1 Crop planting area and production 94 

The irrigated and rain-fed areas of each crop from 2001 to 2018 were assigned at a resolution of 5 arcmin according to 95 

the base map for the year 2000 obtained from the MIRCA2000 dataset (Portmann et al., 2010) and interannual changes per 96 

province extracted from the China Statistical Yearbook (NBSC, 2022). At the provincial scale, irrigation data from 2000-2018 97 

were spatially divided into the proportional areas in which furrow, sprinkler, and micro-irrigation was used for each crop, 98 

retrieving data from the statistical yearbook (CAMIYC, 2022). Due to the lack of data in this regard, all vegetables were 99 

assumed to be grown under irrigation as based on agricultural practice. The national production data for tomatoes and cabbage 100 

were derived from the Food and Agriculture Organization dataset (FAO, 2022) and was proportionally allocated to vegetable 101 

production by provinces. Production data for the remaining crops were obtained from the NBSC (2022). 102 

2.1.2 Meteorological and soil data 103 

The monthly data for precipitation, minimum and maximum temperature, and reference evapotranspiration were obtained 104 

from the Climatic Research Unit Time-Series 4.06 dataset (Harris et al., 2020). All meteorological data were resampled to a 5 105 

arcmin spatial resolution using the ArcGIS mapping platform. Atmospheric CO2 concentration data were acquired from the 106 

Mauna Loa Observatory in Hawaii (Tans and Keeling, 2020). Soil texture data were obtained from the International Soil 107 

Reference and Information Centre (ISRIC) soil profile database (Dijkshoorn et al., 2008). Soil water content data were obtained 108 

from the ISRIC World Inventory of Soil Emission Potentials database (Batjes, 2012). Table 1 summarizes the data sources. 109 

 110 

Table 1. Inventory of data sources. 111 

Variables Data source Spatial 

resolution 

Period Data link 

Irrigated and rainfed crop 

areas 

MIRCA 

2000 

5 arcmin 2000-2018 https://www.uni-frankfurt.de/45218031/Data_download_cent

er_for_MIRCA2000 

Crop production, yield and 

harvested areas 

NBSC Provincial 2000-2018 https://data.stats.gov.cn/adv.htm?m=advquery&cn=E0103 

Production of vegetables FAOSTAT National 2000-2018 https://www.fao.org/faostat/en/#data/QV 

Area of different irrigation 

techniques 

CAMIY Provincial 2000-2018 https://data.cnki.net/Trade/yearbook/single/N2021040192?zc

ode=Z032 

Meteorological data CRU TS v. 

4.03 

30 arcmin 2000-2018 https://crudata.uea.ac.uk/cru/data/hrg/ 

CO2 concentration NOAA Average 2000-2018 https://gml.noaa.gov/ccgg/trends/data.html 
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Soil texture ISRIC 1 arcmin - https://data.isric.org/geonetwork/srv/eng/catalog.search#/met

adata/2919b1e3-6a79-4162-9d3a-e640a1dc5aef 

Initial soil moisture 

content 

ISRIC 5 arcmin - https://data.isric.org/geonetwork/srv/eng/catalog.search#/met

adata/82f3d6b0-a045-4fe2-b960-6d05bc1f37c0 

Note: “-” means constant values. 112 

 113 

2.1.3 Crop characteristics 114 

The characteristics of crops selected for this study are listed in Table 2. Due to differences in their phenology, wheat, 115 

maize, barley, and rapeseed had two sowing periods, whereas rice had three sowing periods across the study’s time frame. The 116 

growth period of all crops was divided into four stages based on their growth characteristics (Allen et al., 1998; Vanuytrecht 117 

et al., 2014): the initial (L1), crop development (L2), mid-season (L3), and late-season (L4) growth stages. Crop planting dates 118 

were retrieved from Chen et al. (1995), the reference harvest index from Xie et al. (2011) and Zhang and Zhu (1990), and crop 119 

growth stages and maximum root depth from Allen et al. (1998) and Hoekstra and Chapagain (2006). 120 

 121 

Table 2. Crop characteristics for the 21 crops in China. 122 

Crop class  
Crop 

code 
 

Planting 

date 

Length of crop development 

stage (day)  
Root deeps (m) 

WP* HI0 

L1 L2 L3 L4 Irrigated Rainfed 

Wheat  1            

Spring wheat    15th Mar 20 25 60 30  1 1.5 15 39 

Winter wheat    15th Oct 30 140 40 30  1.5 1.8 15 40 

Maize  2            

Spring maize    15th Apr 30 40 50 30  1 1.7 33.7 44 

Summer maize    1st Jun 20 35 40 30  1 1.7 33.7 43 

Rice  3            

Early rice    15th Mar 30 30 30 30  0.5  19 44 

Mid rice    15th Apr 30 30 60 30  0.5  19 44 

Late rice    15th Jul 30 30 70 40  0.5  19 44 

Sorghum  4  1st May 20 35 45 30  1 2 33.7 39 

Millet  5  15th Apr 15 55 40 20  1 1.5 32 47 

Barley  6            

Spring barley    15th Apr 15 35 50 30  1 1.5 15 39 

Winter barley    25th Oct 20 110 40 35  1 1.5 15 39 

Soybeans  7  1st Jun 20 40 60 30  0.6 1.3 15 44 

Potatoes  8  1st May 25 30 45 30  0.4 0.6 18 69 

Sweet potatoes  9  1st May 20 30 60 40  1 1.5 18 59 

Cotton  10  1st Apr 30 50 55 45  1 1.7 15 38 
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Sugar cane  11  1st Feb 30 50 180 60  1.2 2 30 60 

Sugar beets  12  15th Apr 50 40 50 40  0.7 1 17 71 

Groundnuts  13  15th Apr 10 80 35 25  0.5 1 17 43 

Rapeseed  14            

Spring rapeseed    15th Apr 6 69 20 36  0.8 1.5 17 32 

Winter rapeseed    30th Sep 6 148 20 36  0.8 1.5 17 32 

Sunflower  15  15th Apr 25 35 45 25  0.8 1.5 18 31 

Tomatoes  16  15th Jan 30 40 40 25  0.7 1.5 18 40 

Apple  17  1st Mar 30 50 130 30  1 2 20 20 

Tea  18  15th Feb 120 60 180 5  0.9 0.9 17 5 

Tobacco  19  15th May 20 30 30 30  0.8 0.8 17 61 

Cabbage  20  5th Jul 40 60 50 15  0.5 0.8 15 67 

Grapes  21  1st Apr 30 60 40 80  1  17 2 

 123 

2.2 Methods 124 

2.2.1 Calculation of uWFCP 125 

The blue and green uWFCP were obtained from the blue and green components of the WFCP (evapotranspiration during 126 

the crop growth period) in relation to the crop yield (Hoekstra et al., 2011). 127 

uWFCPb =
10 × ∑ ETb[𝑡𝑡]

gp
𝑡𝑡=1

𝑌𝑌
                                                                     (1) 128 

uWFCPg =
10 × ∑ ETg[𝑡𝑡]

gp
𝑡𝑡=1

𝑌𝑌
                                                                    (2) 129 

where uWFCPb and uWFCPg are the blue and green uWFCP, respectively (m3 ton-1); ETb and ETg are the blue and green 130 

WFCP (that is, WFCPb and WFCPg), respectively (mm) (see equations 8 and 9); gp represents the days in the growing period; 131 

10 is the unit conversion factor; Y (see equation 4 below) is the crop yield (ton ha-1); and t indicates a given day. 132 

The daily aboveground biomass production (B) was obtained as follows: 133 

𝐵𝐵 = WP∗  × ∑
Tr[𝑡𝑡]

ET0[𝑡𝑡]
                                                                       (3) 134 

where WP* (ton ha-1 mm-1) expresses the aboveground dry matter produced per unit land area per unit of transpired water, 135 

which is governed by a combination of atmospheric CO2 concentration, crop type (C3 and C4 crops), and soil fertility. The 136 

WP* is multiplied with the ratio of crop transpiration (Tr) to the reference evapotranspiration (ET0) for that day. The goal of 137 

normalisation is to make WP* applicable to diverse locations and seasons, including future climate scenarios.  138 

The crop yield (Y) (ton ha-1) was obtained by multiplying the aboveground biomass (B) with an adjusted reference harvest 139 

index: 140 

          𝑌𝑌 = fHIHI0𝐵𝐵                                                                               (4) 141 
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where fHI is the calibration coefficient of the standardised harvest index HI0, which is influenced by water stress and 142 

temperature stress. 143 

2.2.2 Dynamic daily soil water balance 144 

By tracking the daily incoming and outgoing water fluxes at the root zone boundary, the dynamic daily soil water balance 145 

was calculated as follows (Mekonnen and Hoekstra, 2010): 146 

𝑆𝑆[𝑡𝑡] = 𝑆𝑆[𝑡𝑡−1] + PR[𝑡𝑡] + IRR[𝑡𝑡] + CR[𝑡𝑡] − ET[𝑡𝑡] − RO[𝑡𝑡] − DP[𝑡𝑡]                                 (5) 147 

where S is the soil water content (mm); PR is the precipitation (mm); IRR is the irrigation water volume (mm); CR is the 148 

capillary rise from groundwater, assumed to be zero (mm); RO is the surface runoff (mm); DP is the deep soil percolation 149 

(mm); and ET is the actual evapotranspiration (mm), consisting of soil evaporation (E) and crop transpiration (Tr), which were 150 

calculated as follows: 151 

𝐸𝐸 = (KrKe)ET0                                                                             (6) 152 

Tr = �KsKSTrKCTr�ET0                                                                     (7) 153 

where Kr is the evaporation reduction coefficient, which is less than 1 (dimensionless); Ke is the soil evaporation 154 

coefficient, which is proportional to the fraction of the soil surface not covered by the canopy (dimensionless); Ks is the soil 155 

water stress coefficient, which is smaller than 1 when there is insufficient soil water to meet the evaporative demand of the 156 

atmosphere (dimensionless); KSTr is the cold stress coefficient, which drops below 1 when the temperature is insufficient for 157 

growth (dimensionless); and KCTr   is the crop transpiration coefficient, which is proportional to the green canopy cover 158 

(dimensionless). 159 

By tracking the proportional contribution of daily rainfall and irrigation water to each element of the soil water balance, 160 

ETb[t] and ETg[t] were extracted (Zhuo et al., 2016c; Chukalla et al., 2015):  161 

ETb[𝑡𝑡] = IRR[𝑡𝑡] + 𝑆𝑆b[𝑡𝑡−1] − 𝑆𝑆b[𝑡𝑡] − RO[𝑡𝑡] �
IRR[𝑡𝑡]

PR[𝑡𝑡] + IRR[𝑡𝑡]
 � − DP[𝑡𝑡] �

𝑆𝑆b[𝑡𝑡−1]

𝑆𝑆[𝑡𝑡−1]
�             (8) 162 

ETg[𝑡𝑡] = PR[𝑡𝑡] + 𝑆𝑆g[𝑡𝑡−1] − 𝑆𝑆g[𝑡𝑡] − RO[𝑡𝑡] �
PR[𝑡𝑡]

PR[𝑡𝑡] + IRR[𝑡𝑡]
� − DP[𝑡𝑡] �

𝑆𝑆g[𝑡𝑡−1]

𝑆𝑆[𝑡𝑡−1]
�             (9) 163 

where Sb[t] and Sg[t] are the blue and green soil water content (mm) for a crop, respectively, at the end of day t. Following 164 

Zhuo et al. (2016c), the green water value was used as the initial soil water content in each calculation cell. 165 

2.2.3 Irrigation practices module 166 

Different irrigation practices indirectly affect water consumption during the growth period due to differences in the 167 

fraction of the surface wetted (fw) by each method (Raes et al., 2018). The soil evaporation coefficient (Ke) was multiplied by 168 
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the fw-value to account for partial wetness when only a portion of any soil surface was irrigated. Owing to special environmental 169 

restrictions, furrow irrigation was used for rice planting in this study. Specific irrigation conditions were divided into either 170 

sufficient or water-demanding subtypes (irrigation to field capacity when the soil water content reached the wilting point). 171 

Ke = 𝑓𝑓w(1 − CC∗)Kex                                                                    (10) 172 

(1 − CC∗) = 1 − 1.72CC + CC2 − 0.3CC3                  ≥ 0                                         (11) 173 

where the fw-values used for furrow, sprinkler, and micro-irrigation were 80%, 100%, and 40%, respectively; (1 – CC*) 174 

is the dimensionless adjusted fraction of the non-covered soil surface (dimensionless); and Kex is the maximum soil 175 

evaporation coefficient (dimensionless) for fully wet and non-shaded soil surfaces. 176 

2.2.4 Benchmarks for uWFCP 177 

The uWFCP of each grid in the same climate zone was ranked from lowest to highest, and the uWFCP corresponding to 178 

a cumulative crop production of 10%, 20% and 25% of the total production were recorded as the regional uWFCP benchmarks 179 

(Mekonnen and Hoekstra, 2014; Zhuo et al., 2016b; Wang et al., 2019; Yue et al., 2022). Climate zone is a key factor 180 

influencing regional uWFCP benchmarks (Zhuo et al., 2016b). Therefore, we classified China's climatic regions based on the 181 

aridity index (Middleton and Thomas, 1997) (AI; defined as the ratio of rainfall to reference evapotranspiration) and set up 182 

regional uWFCP benchmarks for humid (AI > 0.5) and arid (AI < 0.5) zones. 183 

2.3 Calibration and validation 184 

2.3.1 Production calibration 185 

The statistical yearbook only has crop production statistics on the provincial level. Therefore, we calibrated crop 186 

production at the provincial scale, using a grid scale depicting different water supply modes and irrigation practices based on 187 

the proportional relationship (R) between yield simulation results and the NBSC data (Mialyk et al., 2022). 188 

𝑅𝑅 =
P_Psta

∑ P_Gi,sim
4
i=1

                                                                         (12) 189 

P_Gi,act = P_Gi,sim ∙ 𝑅𝑅                                                                     (13) 190 

where P_PNBSC is the statistical (sta) provincial crop production (ton yr-1); i represents the water supply modes and 191 

irrigation practices; P_Gi,sim is the simulated (sim) grid crop production value (ton yr-1) according to i; and P_Gi,act is the actual 192 

(act) grid crop production value (ton yr-1) according to i. 193 
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2.3.2 Remote sensing validation 194 

Because of the spatially fragmented nature of crop cultivation, we conducted remote sensing validation according to the 195 

Chinese Agricultural Cropping System to reduce the interference of non-agricultural land with the validation results (IGSNRR, 196 

2022). We selected grids in which the sum of planted areas was greater than 5 kha (> 50% of a single grid) and greater than 10 197 

kha (>100% of a single grid) for single- and multi-crop regions, respectively. In terms of the time span, 19 of the 21 crops 198 

studied experienced growth periods from April to August; therefore, these five months were set as the validation interval in 199 

terms of total evapotranspiration. 200 

2.3.3 Publications comparison 201 

The present dataset was compared with published studies that included temporal and spatial data overlaps. The 202 

comparison included the crop planting area at the grid scale (Cheng et al., 2021; Grogan et al., 2022), and the WFCP and 203 

uWFCP values at the grid and national scale (Mekonnen and Hoekstra, 2011; Zhuo et al., 2016a; Chiarelli et al., 2020). 204 

2.3.4 Accuracy assessment 205 

The linear regression coefficient (R2) was used to measure the consistency between the statistical data, remote sensing 206 

data, and simulated results. A greater R2 value indicates a better match. 207 

𝑅𝑅2 =
(∑ (𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 − �̅�𝑥𝑖𝑖) × (ref𝑖𝑖 − ref����𝑖𝑖))2

∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 × ∑ (ref𝑖𝑖 − ref����𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
                                         (13) 208 

where n indicate the number of samples; xi and refi represent the simulated and statistical values (remote sensing data), 209 

respectively; x̅i and ref����𝑖𝑖 are the mean values of the simulated and statistical values (remote sensing data), respectively. 210 

3 Results 211 

3.1 Water footprint of crop production 212 

During the study period, the WFCP of 21 crops in China increased by 13% to 690 Gm³ yr-1 in 2018, with WFCPb and 213 

WFCPg accounting for 29% and 71% of this increase, respectively. The WFCPb and WFCPg varied greatly across crops, time, 214 

and space. Table 3 presents the WFCP of the 21 crops under different water supply modes and irrigation practices. Maize (165 215 

Gm³ yr-1), rice (143 Gm³ yr-1), and wheat (125 Gm³ yr-1) had the highest WFCP, accounting for 67% of the total WFCP. The 216 

WFCP of grapes (177%) and maize (94 Gm³ yr-1) showed the greatest growth rate, with their planting areas expanding by 156% 217 

and 82%, respectively (NBSC, 2022). 218 
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Table 3. WFCP and planting area under different water supply modes and irrigation practices for 21 crops. 219 

Crop 

Furrow irrigation Micro irrigation Sprinkler irrigation Rain–fed 
WFCPb 
M m3 
(△) 

WFCPg 
M m3 
(△) 

Area 
k ha 
(△) 

WFCPb 
M m3 
(△) 

WFCPg 
M m3 
(△) 

Area 
k ha 
(△) 

WFCPb 
M m3 
(△) 

WFCPg 
M m3 
(△) 

Area 
k ha 
(△) 

WFCPg 
M m3 
(△) 

Area 
k ha 
(△) 

Wheat 40,595 35,702 13,157 4,384 2,369 1,357 2,170 1,583 625 41,046 9,127 
(-22%) (-9%) (-18%) (1936%) (1650%) (1964%) (-26%) (-10%) (-20%) (5%) (-6%) 

Maize 31,023 40,092 13,122 5,581 3,604 1,611 4,351 4,413 1,538 120,279 25,859 
(3%) (18%) (12%) (4577%) (2950%) (3413%) (67%) (107%) (95%) (162%) (147%) 

Rice 81,847 58,979 28,306 - - - 4,629 5,540 1,883 - - 
(4%) (1%) (-4%) - - - (329%) (404%) (366%) - - 

Sorghum 346 457 157 57 46 21 53 53 20 1,757 424 
(-36%) (-20%) (-27%) (3124%) (2259%) (2583%) (34%) (85%) (66%) (-35%) (-36%) 

Millet 346 388 137 43 32 16 46 42 16 2,652 609 
(-27%) (-10%) (-20%) (2176%) (1786%) (2032%) (10%) (41%) (28%) (-38%) (-43%) 

Barley 91 133 67 14 12 7 6 7 3 768 235 
(-48%) (-48%) (-52%) (4024%) (3355%) (2902%) (-3%) (3%) (-13%) (-67%) (-65%) 

Soybeans 3,936 6,751 1,963 413 375 144 389 609 193 27,319 6,113 
(-22%) (-16%) (-19%) (2315%) (1871%) (2031%) (35%) (102%) (88%) (-7%) (-10%) 

Potatoes 721 966 377 140 78 39 91 88 34 16,171 4,440 
(-20%) (11%) (14%) (3694%) (2962%) (3256%) (50%) (121%) (106%) (8%) (1%) 

Sweet potatoes 873 1,653 427 37 57 16 37 59 16 10,276 1,921 
(-64%) (-55%) (-57%) (429%) (561%) (513%) (-67%) (-44%) (-51%) (-60%) (-60%) 

Cotton 2,195 2,268 625 788 217 134 85 82 23 9,824 2,573 
(-54%) (-45%) (-52%) (4353%) (1770%) (3006%) (-59%) (-37%) (-49%) (-27%) (-5%) 

Sugar cane 258 589 98 9 20 3 8 17 3 10,924 1,302 
(-36%) (-37%) (-40%) (1309%) (1196%) (1145%) (163%) (170%) (150%) (32%) (28%) 

Sugar beets 0.096 0.029 0.021 0.145 0.043 0.056 0.003 0.001 0.002 812 216 
(-78%) (-78%) (-72%) (5530%) (5859%) (12331%) (-85%) (-85%) (-61%) (-34%) (-34%) 

Groundnuts 3,500 4,842 1,435 209 178 66 210 223 72 14,441 3,046 
(-6%) (4%) (-3%) (1776%) (1596%) (1587%) (11%) (62%) (42%) (-6%) (-8%) 

Rapeseed 0.0159 0.0539 0.0147 0.0001 0.0002 0.0001 0.0001 0.0005 0.0001 19,053 6,551 
(256%) (37%) (67%) (3336%) (1653%) (1800%) (2660%) (965%) (1194%) (3%) (-13%) 

Sunflower 262 202 87 137 49 33 34 21 10 2,913 792 
(-35%) (-16%) (-26%) (8591%) (5601%) (6626%) (-1%) (22%) (10%) (-25%) (-28%) 

Tomatoes 1,365 1,581 949 74 57 44 74 69 47 - - 
(48%) (60%) (45%) (2379%) (2463%) (2270%) (109%) (198%) (144%) - - 

Apple 2,366 2,223 568 352 226 85 166 134 36 7,551 1,250 
(-47%) (-32%) (-41%) (1638%) (1236%) (1452%) (-53%) (-37%) (-44%) (11%) (2%) 

Tea 2,218 3,200 550 51 86 15 68 92 16 13,803 1,730 
(65%) (46%) (43%) (1690%) (1622%) (1464%) (427%) (453%) (404%) (242%) (252%) 

Tobacco 308 673 201 13 39 12 14 26 8 3,819 836 
(-30%) (-12%) (-18%) (1181%) (1800%) (1848%) (-34%) (21%) (4%) (-28%) (-29%) 

Cabbage 1,523 2,642 897 72 96 42 76 124 45 - - 
(-18%) (-19%) (-24%) (1183%) (1033%) (1136%) (15%) (47%) (28%) - - 

Grapes 0.013 0.006 0.003 0.033 0.015 0.008 0.0004 0.0002 0.0001 3,869 725 
(-58%) (-59%) (-58%) (17901%) (17826%) (18248%) (-71%) (-71%) (-71%) (177%) (156%) 

Note: “△” refers to the rate of change from 2000 to 2018. “-” indicates that no crops are grown. 220 

 221 

In addition, the annual average proportions of WFCP attributable to furrow irrigation and rain-fed conditions reached 53% 222 

and 44%, respectively (Fig. S1). Nevertheless, the WFCP of sprinkler and micro-irrigation expanded by 11 and 19 Gm3 yr-1, 223 

respectively, increasing their proportional contribution to the total WFCP by respective factors of 1.6 and 23. Over the same 224 

period, WFCP under furrow irrigation decreased by 5%. Therefore, sprinklers and micro-irrigation planting modes are being 225 
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deployed more often on existing and freshly reclaimed farmland in China (NBSC, 2022). In conclusion, when quantifying and 226 

evaluating the WFCP, it is vital to consider the influence of various water supply modes and irrigation practices (Wang et al., 227 

2019). 228 

 229 

Figure 2. Total national monthly WFCPg and WFCPb of 21 crops in China over 2000-2018.  230 
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The water source accessed for crop production varied cyclically across years (Fig. 2). The WFCPb peaked annually in 231 

May, with an average annual value of 16 Gm³ mon-1; water usage by rice and maize crops were responsible for 40% and 37% 232 

of this value, respectively. In January and February of each year, the WFCPg comprised almost 75% of the monthly WFCP. 233 

The annual peak of the WFCPg alternated between June and July, with an average annual value of 83 Gm³ mon-1, 40% of which 234 

was attributable to water consumption by maize crops. The monthly WFCP values revealed that the peaks of evaporation 235 

(average annual value of 45 Gm³ mon-1) and transpiration (average annual value of 56 Gm³ mon-1) for the 21 crops occurred 236 

in May and July, respectively (Fig. S2 and S3). The monthly WFCP fluctuated within each crop; nevertheless, the relative 237 

contributions of evapotranspiration and transpiration to total water consumption during the same growth period varied less 238 

from year to year. The above analysis allowed us to identify the quantity, type, and periods of water consumption by each crop.  239 

The grid-scale spatial distributions of the monthly WFCP, WFCPb, and WFCPg values are shown in Fig. 3. The months 240 

with large grid WFCP (WFCP > 50 mm mon-1, WFCPb > 10 mm mon-1, and WFCPg > 30 mm mon-1) mainly comprised April 241 

to August. The Northeast Plain, North Plain, and Sichuan Basin contained the regions with the highest grid WFCP. The grid 242 

WFCP varied considerably among the 21 crops, but its spatial distribution was consistent within the planted area of each crop. 243 

In addition, the regional distribution of grid WFCPb and WFCPg values of each crop exhibited significant spatial heterogeneity 244 

(Fig. S4 and S5). The grid WFCP, WFCPb, and WFCPg of sprinkler irrigation at the monthly and annual scales were 245 

significantly higher than those of the other two irrigation practices, and high-value regions were concentrated in the northeast, 246 

southwest, and south of China (Fig. S6–S10). The relative blue and green water consumption via evaporation and transpiration 247 

depended on the natural conditions prevailing at the time and in the space where the 21 crops were grown, as well as the water 248 

supply modes and irrigation practices (Fig. S11–S14). 249 

 250 
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 251 
Figure 3. Gridded monthly total WFCP (a), WFCPb (b), and WFCPg (c) of 21crops in China by 2017. 252 
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3.2 Water footprint per unit of crop production 253 

Tea (8372 m3 ton-1), cotton (3974 m3 ton-1), and tobacco (2242 m3 ton-1) had comparatively large uWFCP, whereas fruits 254 

and vegetables had a uWFCP of less than 500 m3 ton-1. Among the grain crops, wheat and maize had uWFCP of 1110 m3 ton-255 

1 and 883 m3 ton-1, respectively. Late rice (826 m3 ton-1) had a slightly greater uWFCP than early (654 m3 ton-1) and mid (732 256 

m3 ton-1) rice. The uWFCP, uWFCPb, and uWFCPg for all 21 crops showed a trend of fluctuating decline during the study 257 

period as yield grew (Fig. 4). The uWFCP of cotton (51%), sugar beets (52%), and apple (55%) showed the greatest reduction. 258 

The uWFCP of wheat and maize decreased by more than 25%, because the yield increased by 45% and 33%, respectively. 259 

 260 

 261 
Figure 4. Interannual variation in uWFCPb, uWFCPg, and yield of 21crops in China over 2000-2018. 262 
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The uWFCP of the 21 crops was relatively high under rain-fed conditions (Table 4, Fig. S15). Additionally, the uWFCPb, 263 

uWFCPg, and yield of each crop responded differently to the three irrigation treatments. These variations were caused by the 264 

fact that the proportions of blue and green water consumption via soil evaporation and crop transpiration differed between 265 

crops and irrigation practices (Fig. S16). For example, blue water consumption via crop transpiration in furrow and sprinkler 266 

irrigation accounted for 45% and 51% of the total crop water consumption, respectively, which was much lower than that of 267 

micro-irrigation (62%). Therefore, the effects of different water supply modes and irrigation practices should be considered in 268 

the quantification of uWFCP over a long time series. 269 

 270 

Table 4. The uWFCPb, uWFCPg, and yield of 21crops under different water supply modes and irrigation practices. 271 

Crop 

Furrow irrigation Micro irrigation Sprinkler irrigation Rain–fed 
Blue 

uWFCP 
m3 ton-1 

(△) 

Green 
uWFCP 
m3 ton-1 

(△) 

Yield 
ton ha-1 

(△) 

Blue 
uWFCP 
m3 ton-1 

(△) 

Green 
uWFCP 
m3 ton-1 

(△) 

Yield 
ton ha-1 

(△) 

Blue 
uWFCP 
m3 ton-1 

(△) 

Green 
uWFCP 
m3 ton-1 

(△) 

Yield 
ton ha-1 

(△) 

Green 
uWFCP 
m3 ton-1 

(△) 

Yield 
ton ha-1 

(△) 
Wheat 508 447 6.1 628 340 5.1 636 464 5.5 999 4.5 

(-30%) (-18%) (36%) (-18%) (-29%) (20%) (-31%) (-16%) (35%) (-38%) (80%) 
Maize 369 477 6.4 369 238 9.4 390 396 7.3 820 5.7 

(-26%) (-15%) (25%) (-26%) (-52%) (80%) (-38%) (-24%) (39%) (-26%) (43%) 
Early rice 231 406 0.2 – – – 332 305 172.6 – – 

(4%) (-6%) (463%) – – – (4%) (-12%) (-79%) – – 
Mid rice 349 382 0.6 – – – 420 291 91.7 – – 

(-24%) (-4%) (361%) – – – (-5%) (-2%) (-73%) – – 
Late rice 237 540 0.2 – – – 454 322 156.6 – – 

(8%) (-2%) (526%) – – – (-3%) (-2%) (-81%) – – 
Sorghum 601 793 3.7 713 567 3.8 693 696 3.9 805 5.2 

(-43%) (-29%) (54%) (-21%) (-42%) (52%) (-56%) (-39%) (82%) (-39%) (67%) 
Millet 719 807 3.5 705 531 3.8 712 652 4.0 1,528 2.8 

(-45%) (-32%) (65%) (-36%) (-47%) (68%) (-51%) (-38%) (76%) (-38%) (75%) 
Barley 369 536 3.7 660 558 2.9 1,038 1,069 2.1 1,051 3.1 

(15%) (15%) (-7%) (86%) (55%) (-26%) (117%) (130%) (-48%) (25%) (-24%) 
Soybeans 915 1,569 2.2 1,359 1,236 2.1 1,006 1,575 2.0 2,489 1.8 

(-14%) (-8%) (12%) (-1%) (-19%) (14%) (-29%) (6%) (2%) (-11%) (16%) 
Potatoes 192 258 9.9 188 105 19.0 156 150 17.0 1,253 2.9 

(-10%) (25%) (-22%) (-14%) (-30%) (31%) (-3%) (42%) (-24%) (-28%) (47%) 
Sweet potatoes 403 762 5.1 485 751 4.9 457 721 5.2 1,231 4.3 

(-26%) (-7%) (14%) (-22%) (-3%) (11%) (-38%) (4%) (9%) (-8%) (10%) 
Cotton 2,539 2,623 1.4 1,306 360 4.5 2,807 2,704 1.3 2,133 1.8 

(-18%) (-3%) (17%) (-53%) (-80%) (208%) (-22%) (20%) (3%) (-55%) (71%) 
Sugar cane 16 37 164.9 13 29 200.7 19 41 146.1 120 69.8 

(-31%) (-32%) (56%) (-10%) (-17%) (26%) (-43%) (-41%) (83%) (-26%) (40%) 
Sugar beets 8 2 752.3 7 2 786.0 10 4 520.9 72 52.2 

(-35%) (-36%) (54%) (-35%) (-32%) (49%) (-26%) (-23%) (30%) (-53%) (114%) 
Groundnuts 440 608 5.5 633 540 5.0 534 567 5.5 1,669 2.8 

(-35%) (-29%) (50%) (0%) (-10%) (11%) (-41%) (-14%) (32%) (-5%) (8%) 
Rapeseed 181 611 6.0 116 676 6.0 181 611 6.0 1,435 2.0 

(35%) (-48%) (58%) (19%) (-39%) (52%) (35%) (-48%) (58%) (-12%) (34%) 
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Sunflower 829 639 3.6 694 250 6.0 794 485 4.5 1,504 2.4 
(-27%) (-6%) (21%) (-42%) (-62%) (121%) (-30%) (-13%) (28%) (-39%) (72%) 

Tomatoes 25 28 58.6 28 22 58.7 27 25 58.6 – – 
(-43%) (-38%) (77%) (-41%) (-39%) (77%) (-52%) (-31%) (77%) – – 

Apple 159 150 26.1 200 128 20.9 219 177 21.1 345 17.5 
(-65%) (-56%) (159%) (-40%) (-54%) (87%) (-66%) (-55%) (151%) (-48%) (111%) 

Tea 1,769 2,552 2.3 1,546 2,601 2.2 1,620 2,218 2.6 10,769 0.7 
(-52%) (-57%) (138%) (-64%) (-66%) (221%) (-65%) (-63%) (198%) (-17%) (17%) 

Tobacco 596 1,303 2.6 486 1,436 2.2 622 1,110 2.9 2,281 2.0 
(-25%) (-5%) (13%) (-24%) (13%) (-14%) (-40%) (9%) (6%) (-15%) (20%) 

Cabbage 49 85 34.7 53 71 32.7 48 79 35.0 – – 
(4%) (2%) (4%) (6%) (-7%) (-2%) (-14%) (9%) (5%) – – 

Grapes 135 63 33.8 115 54 33.8 148 64 33.8 283 18.8 
(-44%) (-45%) (80%) (-45%) (-46%) (80%) (-44%) (-45%) (80%) (-34%) (63%) 

Note: “△” refers to the rate of change from 2000 to 2018. “-” indicates that no crops are grown.  272 

 273 

The spatial distribution of the gridded uWFCP showed significantly heterogeneity (Fig. 5, S17, and S18). There were 274 

many regions with high-gridded uWFCP values for potatoes, which were concentrated in northern China. The crop with the 275 

densest distribution of high-gridded uWFCPb values was tea, which was commonly dispersed throughout the southern regions. 276 

Soybean and millet possessed more uWFCPg high-value areas, mainly in the northern regions. By comparing the relative 277 

changes in the average grid uWFCP from the period of 2000-2009 to that of 2010-2018, it was determined that the uWFCP of 278 

all 21 crops exhibited a spatially significant decreasing trend (Fig. S19–S21). It is essential to emphasise that the dominant 279 

factors governing this decrease in uWFCP varied among crops. For example, the decline observed in the uWFCP of apple was 280 

attributable to a substantially larger decrease in uWFCPg than the corresponding rise in uWFCPb, whereas that observed for 281 

tea was caused by a considerable decrease in uWFCPb. 282 

For most crops, rainfed ones had more regions of high uWFCP than irrigated ones, and the geographical distribution of 283 

uWFCP for the same crop was generally consistent, regardless of irrigation practices. The variation in uWFCPb and uWFCPg 284 

for the same water supply mode and irrigation practice in a crop was considerable owing to regional water consumption and 285 

yield differences (Fig. S22 and S23). Additionally, the temporal evolution of uWFCPb and uWFCPg under various water supply 286 

modes and irrigation practices was analysed, and rainfed crops demonstrated a more rapid and wider reduction in uWFCP than 287 

irrigated crops. 288 

 289 

https://doi.org/10.5194/essd-2023-102
Preprint. Discussion started: 13 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 18 / 34 

 

 290 
Figure 5. Gridded uWFCP of 21 crops in China at annual average level for 2000-2018. 291 

 292 

3.3 Benchmarks for uWFCP 293 

Annual uWFCP benchmarks were calculated using the different production percentiles for each of the 21 crops under 294 

various water supply modes and irrigation practices (Table S1). Significant interannual differences existed between these 295 

uWFCP benchmarks; therefore, it will be necessary to reassess these benchmarks using longer time-series measurements to 296 

reduce the impact of years with exceptional results as outliers in the dataset. The benchmarks for the uWFCP of different crops 297 
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responded differently to climatic zone. Crops such as millet, soybeans, and groundnuts had higher benchmarks for uWFCP in 298 

arid zones than in humid zones due to differences in production percentiles; the reverse was true for maize, cotton, and 299 

sunflower. Overall, the uWFCP benchmarks for rainfed crops were higher than those for irrigated crops. The uWFCP 300 

benchmarks for each irrigation practice varied by crop species.  301 

Fig. 6 and Fig. S26–S28 present the uWFCP benchmarks according to different production percentiles in humid and arid 302 

zones and as obtained for various water supply modes and irrigation practices. Except for vegetables (tomatoes and cabbage), 303 

the majority of crops were cultivated in regions with a uWFCP benchmark that exceeded the 25% production percentile. Under 304 

furrow and sprinkler irrigation, the areas that fell below the uWFCP benchmark at the 25% production percentile were 305 

predominantly distributed in the humid zone. In the arid zone, a greater proportion of micro-irrigated regions fell below the 306 

uWFCP benchmark at the 25% production percentile. The results indicate that governing bodies need to consider the influence 307 

of climatic zones as well as water supply modes and irrigation practices when quantifying uWFCP benchmarks to identify 308 

hotspots for water-saving potential; specific water-use policies need to be formulated both for crop varieties and irrigation 309 

practices. 310 

 311 
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 312 

Figure 6. Benchmarks for uWFCP at different production percentiles under furrow irrigation in China by 2018. 313 

 314 
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3.4 Results comparison 315 

Using publicly available datasets, we compared the water use of 15 crops with the WATNEEDS dataset (Chiarelli et al., 316 

2020) that overlapped in time (in 2000) and space (137,956 grids). As illustrated in Fig. 7, the results showed that R2 > 0.60 (p 317 

< 0.01) among 12 of the crops. However, large deviations were present in the comparisons of data for barley, sunflower, and 318 

potatoes. The following two factors were responsible for this disparity. First, the current study aimed to quantify the actual 319 

water consumption during crop growth, whereas the WATNEEDS dataset concentrated on theoretical crop water requirements. 320 

Second, this study divided irrigation into furrow, sprinkler, and micro-irrigation categories at the grid scale. In reality, sprinkler 321 

irrigation covers a much larger area than micro-irrigation does and also possesses the highest fw of our three irrigation categories, 322 

which is ultimately reflected in a higher water consumption in our data. Overall, our dataset displayed a high level of reliability. 323 

The comparison of our WFCP data with the WATNEEDS dataset (Chiarelli et al., 2020) on a national scale is shown in Table 324 

5. Except for rice, the variability of WFCP and WFCPb between the two datasets was under 25% and 20%, respectively, 325 

demonstrating high consistency. Large differences in the WFCPg between the two datasets can be attributed to two factors, 326 

namely, the different quantification methods used (including model mechanisms and green water definitions) and the different 327 

sources of precipitation data used for model input, leading to variations in green water simulations. With regards to the 328 

variability observed in rice data, some of our grids contained information for two to three seasons of rice cultivation (combined 329 

with the actual regional cultivation), and all of these instances were assumed to receive irrigation in this study; this may have 330 

resulted in a comparatively low WFCPg value.  331 

 332 
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 333 

Figure 7. Comparison of WFCP with WATNEEDS dataset. 334 

 335 

In a comparison of the uWFCP obtained for 21 crops in our dataset with figures reported by Mekonnen and Hoekstra 336 

(2011) and Zhuo et al. (2016a), the variability of data for 18 crops was under 30%, which was attributed to the uncertainty 337 

imposed by model simulation (Table 5). Although crop acreage remains consistent at the national scale, sets of crop distribution 338 

data must be matched with different sets of input variables (such as precipitation, temperature, and soil moisture content), 339 

which has a significant impact on the simulated values. The differences in the uWFCP of potato, sweet potato, and cotton 340 

resulted from the large discrepancies in production data, with simulated values for these three crops by Mekonnen and Hoekstra 341 

(2011) and Zhuo et al. (2016a) being 80%, 81%, and 67% higher than the statistical yearbook. 342 

 343 
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Table 5. Comparison of WFCP and uWFCP in overlapping time and space with published results. 344 

Crop 

WFCP  

Unit: M m3 yr-1. Period: 2000. 

 uWFCP 

Unit: m3 ton-1. Period: 2000-2005. 

 uWFCP 

Unit: m3 ton-1. Period: 2000-2009. 

Current study 
Chiarelli et 

al., 2020 (△) 

 

Current study 

Mekonnen 

and Hoekstra, 

2011 
(△) 

 

Current study 
Zhuo et al., 

2016a 
(△) 

Blue Green Blue Green  Blue Green Blue Green  Blue Green Blue Green  

Wheat 80 55 79 22 (14%)  800 501 821 466 (1%)  754 472 1,135 392 (11%) 

Maize 82 33 78 24 (6%)  744 264 791 74 (8%)  728 239 747 56 (9%) 

Rice 59 80 255 97 (43%)  328 432 549 246 (2%)  323 437 987 395 (29%) 

Sorghum 3 1 3 0 (4%)  1,002 178 952 42 (9%)  1,059 186 695 58 (25%) 

Millet 5 1 4 0 (11%)  2,092 224 1,600 40 (17%)  2,145 242 1,418 141 (21%) 

Barley 3 0 4 0 (21%)  804 50 556 28 (19%)  843 58 560 120 (14%) 

Soybeans 38 5 33 5 (5%)  2,337 326 2,549 249 (2%)  2,418 317 2,336 316 (2%) 

Potatoes 16 1 16 1 (0%)  1,163 62 215 7 (69%)  1,154 64 183 9 (73%) 

Sweet 

potatoes 
29 3     1,184 105 242 4 (68%)  1,211 108 63 22 (88%) 

Cotton 18 5 23 3 (8%)  4,236 951 1,440 247 (51%)  3,781 847 1,117 281 (54%) 

Sugar cane 9 0 12 1 (17%)  122 5 169 6 (16%)  118 4 124 1 (1%) 

Sugar beets 1 0 1 0 (2%)  130 0 148 0 (6%)  117 0 104 0 (6%) 

Groundnuts 20 4 19 3 (5%)  1,412 257 1,383 85 (6%)  1,347 260 1,399 219 (0%) 

Rapeseed 18 0 12 0 (22%)  1,713 0 1,387 0 (11%)  1,623 0 1,754 0 (4%) 

Sunflower 4 0 3 0 (9%)  2,154 232 2,254 341 (4%)  1,991 237 1,025 163 (30%) 

Tomatoes 1 1     46 43 182 3 (35%)  42 39 81 2 (2%) 

Apple 10 5     443 186 796 30 (14%)  389 154 372 46 (13%) 

Tea 6 1     8,440 1,970 9,277 798 (2%)  7,860 1,792 9,055 122 (3%) 

Tobacco 6 0     2,273 174 2,007 253 (4%)  2,162 167 1,771 18 (13%) 

Cabbage 3 2     82 53 237 4 (28%)  82 53 122 8 (2%) 

Grapes 1 0 1 0 (7%)  407 0 357 0 (7%)  364 0 349 123 (13%) 

Note: “△” Calculated as the ratio of the study difference to the study mean. 345 

 346 

4 Discussion 347 

4.1 Data validation 348 

We compared our 5 arcmin resolution of major crop areas between 2001 and 2018, as calculated by the proportional 349 

invariant method, with the GAEZ+2015 (Grogan et al., 2022) and MapSPAM2010 (IFPRI, 2019) data products (Fig. 8). Linear 350 

regression results for data on wheat, maize, and rice coverage showed that R2 was greater than 0.50 (p < 0.01) at the raster 351 

scale and greater than 0.80 (p < 0.01) at the provincial scale, and the overall variability at the national scale was under 8%. 352 
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Overall, comparisons with existing products validated the accuracy of the gridded representation of crop land coverage as 353 

obtained in this study.  354 

 355 

 356 

Figure 8. Comparison of the current gridded area representing land coverage by major crops with the GAEZ+2015 and 357 
MapSPAM2010 datasets. 358 

 359 

Based on data from remote sensing products, we validated our evapotranspiration data (Fig. 9) by following the selection 360 

process outlined in Section 2.3.2. Our evapotranspiration results were higher than the SEBAL product (Cheng et al., 2021), 361 

which is a daily time series evapotranspiration product based on MOD16 data, but had good overall consistency (R2
 > 0.50, p 362 

< 0.01) for 11 out of the 18 years. The reality of interannual variability in agricultural practices (irrigation vs. non-irrigation) 363 

and the presence of deficit irrigation could result in the low evapotranspiration data of remote sensing products relative to that 364 

generated in model simulations. In general, a comparison of our dataset with those of SEBAL product verified the accuracy of 365 

our model. 366 

 367 
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 368 
Figure 9. Validation of the evapotranspiration at croplands with SEBAL datasets. 369 

 370 

4.2 Sensitivity and uncertainty analysis 371 

To clarify the sensitivity of a WFCP assessment to the main parameters in a simulation, a previous study by the authors 372 

applied the one-at-a-time and sensitivity index methods to quantitatively evaluate a WFCP calculation by AquaCrop (Li et al., 373 

2022). The results indicated that crop water consumption and production were extremely sensitive to the reference 374 
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evapotranspiration and the crop transpiration coefficient. The soil evaporation coefficient furthermore influenced soil 375 

evaporation in the root zone, and consequently, WFCP. The effect of planting date differed for each crop, and advancing or 376 

delaying it exposed crops to completely different rain and heat conditions. Importantly, the accuracy of all model studies 377 

(including those using AquaCrop) is dependent on both the model mechanism and the input data. AquaCrop's accuracy in 378 

simulating crop water consumption and production for various climates, soils, and field management practices has been 379 

extensively validated (Zhuo et al., 2016a; Pirmoradian and Davatgar, 2019; Wang et al., 2019; Chibarabada et al., 2020).  380 

At the outset of the simulation used in this study, we rigorously screened the input data according to the principles of 381 

accuracy and representativeness. However, there was a degree of bias in the model setup and input data. For instance, the 382 

current study focused on the effect of water stress on crop growth and worked from the assumption that all nutrients required 383 

for crops were provided. AquaCrop, as a water-driven model, simulates crop growth comprehensively by establishing the 384 

responsive link between effective soil water usage and crop yield (Raes et al., 2018). However, there is a serious 385 

overapplication of chemical fertilisers in Chinese farmlands (Chen et al., 2014; Cui and Shoemaker, 2018). Furthermore, the 386 

parameters we used for fraction of the surface wetted in either furrow, sprinkler, or micro-irrigation remained consistent across 387 

regions owing to the absence of any data related to possible variance; in other words, we downplayed regional variations within 388 

the same irrigation practice. Taking micro-irrigation as an example, the difference between different micro-irrigation products 389 

mostly lies in the transport and distribution pipe networks and irrigator, which have little impact on the fraction of the surface 390 

wetted in the crop root zone. In terms of crop parameters, we set many constant parameters for the same crops that do not vary 391 

with simulation time and space, including planting date, harvest date, harvest index, and root depth, which will also lead to 392 

inaccurate assessments of crop production and water consumption (Waha et al., 2012). Consequently, in future research, 393 

attention to the collection and organisation of basic data can play a positive role in the improvement of the model mechanism 394 

and accuracy of the output (Mekonnen and Hoekstra, 2010; Mekonnen and Hoekstra, 2011). 395 

In general, despite the uncertainties in the input data, the calculated WFCP and uWFCP were in good agreement with 396 

existing studies at both the grid and national scales, and the dataset in the long time series was compatible with remote sensing 397 

products. The above analysis demonstrated that the findings of our current study correctly reflected water consumption during 398 

the crop growth period under various water supply modes and irrigation practices. 399 

5 Data availability 400 

All data used in this study are freely available with the links given in Sect. 2. The dataset presented in this article are 401 

available from the Zenodo repository at https://doi.org/10.5281/zenodo.7756013 (Wang et al., 2023).  Both gridded 402 
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consumptive water footprints, evaporation, transpiration, and associate benchmarks of crop production are provided.  403 

6 Conclusions 404 

The current study constructed a gridded WFCP database for 21 crops in China for 2000-2018 to reflect different water 405 

supply modes and irrigation practices, thereby addressing monthly blue and green water consumption in soil evaporation and 406 

crop transpiration. Additionally, we established uWFCP benchmarks for various climatic zones, water supply modes and 407 

irrigation practices. The current dataset was thoroughly validated. The results highlighted the necessity to explore the 408 

influences of different field management practices on WFCP quantification and benchmarking in future research.  409 

The WFCP is a crucial indicator used for evaluating water consumption by crops and a key component to solving the 410 

problems associated with the environmental "footprint family" and "planetary boundary" (Galli et al., 2012; Hoekstra and 411 

Wiedmann, 2014; Steffen et al., 2015). The current dataset is able to support for precise crop water productivity assessments, 412 

agricultural water-saving evaluations, the development of sustainable irrigation techniques, cropping structure optimisation, 413 

and crop-related interregional virtual water trade analysis. The dataset can furthermore be applied to develop dynamic water 414 

management policies by virtue of its analysis of the spatial and temporal fluctuations in crop water consumption. The 415 

methodological framework for batch quantification of the WFCP can facilitate the updating of relative dataset and scale 416 

conversion studies. 417 
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